そんな今日この頃でして、、、

コード書いたり映画みたり。努力は苦手だから「楽しいこと」を探していきたい。

Macbook Pro 2017 High Sierra 10.13.4でnVidiaのeGPU(外付けGPU)を使ってみる

VRゲームやりたいしDeep Learningでも遊んでみたい!でも家は狭いからPC増やしたくもない・・・

せっかく性能もお値段もお高めのMacbook Pro 2017 15inc touchbarを買ったわけだし、こいつのThunderbolt3はeGPUにも対応してる。というわけでGeForce GTX 1070を外付けGPUとして使用できるAORUS GTX 1070 Gaming Boxをポチってみたのが2月頭。

GIGABYTE ビデオカード GTX1070搭載 外付けVGA BOX GV-N1070IXEB-8GD

GIGABYTE ビデオカード GTX1070搭載 外付けVGA BOX GV-N1070IXEB-8GD

当時は仮想通貨ブームの品薄で発送延期が積み重なって一ヶ月。

更に「eGPU対応」を謳ったMacOS 10.13.4にアップデートしたところこれが裏目に。Nvidia製は公式に対応してくれない上に、以前のバージョンまでの方法も使えなくなってしまった。

失意のまましばらくはWindowsで起動してWindows MRを使用する時専用のガジェットと化していた。(これはこれでまた別に記事を上げようと思う)


しかし、先日ようやく対応策が有志の手によって上がってきて、何とかやっとデバイス認識がちゃんとできる&CUDA動きそうなところまでいけたので記録を兼ねて書いてみたいと思う。


注意!先走って手順の途中でeGPUを繋がないこと。手順が途中だとOSが落ちるので、当たりどころが悪いとOS破損するかも。


手順1. SIPの無効化

最近のMacOSではシステムファイルを保護するSIP機構がデフォルトで有効になっており、これが以降のドライバまわりの作業を阻害してしまう。そこで一旦リカバリーモードで起動した上でコマンドラインから無効にしてやる必要がある。

1-1. リカバリーモードでの起動

Macを再起動し、起動時にCommand + Rキーを長押し。

f:id:blue1st:20180523235716j:plain:w500

1-2. ターミナルを起動

上部のメニューからターミナルを選択。

f:id:blue1st:20180523235920j:plain:w500

1-3. csrutilコマンド

ターミナルにcsrutil disableと打ち込んでSIPを無効化。

f:id:blue1st:20180524000103j:plain:w500

以上でリカバリーモードでの作業は終了。再起動して普通に起動する。


手順2. ドライバの導入

以下のスレッドのドライバを使用。

egpu.io

使用しているOSのバージョンに合わせてダウンロードしインストールを進める。2018/5/24時点では10.13.4向けにはNVDAEGPUSupport-v9.zip387.10.10.10.30.103.pkgをリンクからダウンロードしてインストールした。

f:id:blue1st:20180524000421p:plain:w500

追々勝手にアップデートの指示が出るんだけど、今のところ(387.10.10.10.30.107)素直に従っても大丈夫だった。

f:id:blue1st:20180524001202p:plain:w300


手順3. CUDAの導入

ここに関してはちゃんとメモを取り損ねた・・・が、公式サイトだし確か普通に表示に従って行って問題なかったはず。

f:id:blue1st:20180524084309p:plain:w300

3-1. CUDA Driver

www.nvidia.com

僕の環境もアップデートして最新の396.64になってた。

f:id:blue1st:20180524001907p:plain

3-2 CUDA toolkit

https://developer.nvidia.com/cuda-toolkitdeveloper.nvidia.com

僕が入れた時から一個バージョンが進んで9.2が最新みたい。

f:id:blue1st:20180524000921p:plain:w500


手順4. PurgeWranglerによるパッチの適用

ちょっと僕の知識の限界があって正確には何をしているのか把握していないが、とかくこれをやらないとeGPUを挿してもハングアップしてしまう状態だった。

以下のスレッドの手順に従って

egpu.io

ターミナルを開いて以下のコマンドをコピペ。

$ curl -L -s  https://github.com/mayankk2308/purge-wrangler/releases/download/3.0.2/purge-wrangler.sh  > purge-wrangler.sh;chmod +x purge-wrangler.sh;./purge-wrangler.sh;rm purge-wrangler.sh

sudoなのでパスワードを求められ、その後以下の選択肢。

$ purge-wrangler
Password:
>> PurgeWrangler (3.0.2)

   >> Patching System               >> Reverting & Recovery
   1.  TB1/2 eGPU Patch             4.  Uninstall Patches
   2.  Universal NVIDIA eGPU Patch  5.  System Recovery
   3.  Patch Status Check

   >> Additional Options            >> System Sleep Configuration
   6.  Command-Line Shortcuts       8.  Disable Hibernation
   7.  Script Version               9.  Enable Hibernation

   10. Reboot System
   11. Quit

What next? [1-11]:

ここで2. Universal NVIDIA eGPU Patchを選択して適用した上でMacを再起動。


手順5. 接続・動作確認

Macを再起動後(起動前から接続してると画面がブラックアウトする)、晴れてeGPUを接続。

システムレポートにもキッチリGeForce 1070 外部GPUと載ってくれる。

f:id:blue1st:20180524003308p:plain:w500


CUDAが使えるかチェックするためにサンプルディレクトリに移動し(バージョンによってパス変わる)、デバイスの状態をチェックするプログラムdeviceQueryをコンパイル。

$ cd /Developer/NVIDIA/CUDA-9.1/samples/
$ sudo make -C 1_Utilities/deviceQuery

出力ディレクトリに移動して実行すると・・・

$ cd /Developer/NVIDIA/CUDA-9.1/samples/bin/x86_64/darwin/release/
$ ./deviceQuery
./deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce GTX 1070"
  CUDA Driver Version / Runtime Version          9.2 / 9.1
  CUDA Capability Major/Minor version number:    6.1
  Total amount of global memory:                 8192 MBytes (8589737984 bytes)
  (15) Multiprocessors, (128) CUDA Cores/MP:     1920 CUDA Cores
  GPU Max Clock rate:                            1721 MHz (1.72 GHz)
  Memory Clock rate:                             4004 Mhz
  Memory Bus Width:                              256-bit
  L2 Cache Size:                                 2097152 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 2 copy engine(s)
  Run time limit on kernels:                     Yes
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  Device supports Unified Addressing (UVA):      Yes
  Supports Cooperative Kernel Launch:            Yes
  Supports MultiDevice Co-op Kernel Launch:      No
  Device PCI Domain ID / Bus ID / location ID:   0 / 70 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 9.2, CUDA Runtime Version = 9.1, NumDevs = 1
Result = PASS

正常ならばこんな感じでGPUが表示されるはずである。


ちなみに現状ではプラグアンドプレイはあんまりうまく行ってないらしく、そのまま抜いたらハングアップするし、メニューバーの表示も変なのはご愛嬌。メニューバーの方で接続解除してもやっぱりハングアップした。

f:id:blue1st:20180524004232p:plain:w300


本来ならばここでpycuda入れてjupyterでも立ち上げてMNISTでも動かしてGPUの恩恵をチェックすべきところなんだが・・・平日夜なんで今日はご勘弁。それはまたの機会にということで。

今だと1080の方が相対的に安く見えるね・・・


そんなこんなで、現状なんとか動きそうではあるが、いかんせん公式の手段ではない自己責任の獣道である。もし単にゲーミング(あるいは仮想通貨掘削)用途で使用するのであれば、Apple公式で対応しているRadeonのGPUが乗った方を購入することをおすすめしたい。

GIGABYTE ビデオカード RX580搭載 外付けVGA BOX GV-RX580IXEB-8GD

GIGABYTE ビデオカード RX580搭載 外付けVGA BOX GV-RX580IXEB-8GD